

AFRL-IF-RS-TR-2001-280

Final Technical Report

January 2002

SOFTWARE EVOLUTION USING HIGHER ORDER
TYPED (HOT) LANGUAGE TECHNOLOGY

Yale University

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. D888

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be interpreted as
necessarily representing the official policies, either expressed or implied, of the Defense Advanced Research
Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public, including
foreign nations.

 AFRL-IF-RS-TR-2001-280 has been reviewed and is approved for publication.

APPROVED:

 Project Engineer

 FOR THE DIRECTOR:

 MICHAEL TALBERT, Maj., USAF, Technical Advisor
 Information Technology Division
 Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data
needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden
to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave
blank)

2. REPORT DATE
 JANUARY 2002

3. REPORT TYPE AND DATES COVERED
 Final Aug 96 - Jul 99

4. TITLE AND SUBTITLE
 SOFTWARE EVOLUTION USING HIGHER ORDER TYPED (HOT)
LANGUAGE TECHNOLOGY

5. FUNDING NUMBERS
C - F30602-96-2-0232
PE - 62702F
PR - D883
TA - 01

6. AUTHOR(S)
 Paul Hudak, Zhong Shao, and John Peterson

 WU - 01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 Yale University
 Department of Computer Science
 51 Prospect Street
 New Haven Connecticut 06520-8285

 N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

Defense Advanced Research Projects Agency
3701 North Fairfax Drive
Arlington Virginia 22203-1714

AFRL/IFTD
525 Brooks Road
Rome NY 13441-4514

AFRL-IF-RS-TR-2001-280

11. SUPPLEMENTARY NOTES
 Air Force Research Laboratory Project Engineer: Nancy A. Roberts/IFTD/(315) 330-3566

12a. DISTRIBUTION / AVAILABILITY STATEMENT
 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
The objective of this effort was to develop and demonstrate innovative approaches and
techniques to support rapid incorporation of new requirements and technologies into and
evolving system’s capabilities and architecture. Their approach was to develop and
demonstrate the integrated incremental programming environment by developing designs based
on modular executable specs, capturing architectures by using a higher order typed (HOT)
module language, and developing a programming environment which supports incremental
programming. Yale developed and demonstrated HOT language technology in three areas:
domain specific languages, compilers and architecture definition languages. They also
created HOT ACME, an architectural description language (ADL). They collaborated with
other groups on two widely used HOT languages: Haskell, as implemented by the Hugs
interpreter, and ML, as implemented by SML/NJ using FLINT backend.

14. SUBJECT TERMS
 Higher Order and Typed Languages, Incremental Programming,

15. NUMBER OF PAGES
11

 Architecture Definition Languages 16. PRICE CODE

17. SECURITY
CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY
CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF
ABSTRACT

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

i

Table of Contents

OBJECTIVE.. 1
APPROACH ... 1
TECHNOLOGY TRANSITION:... 2
A CHRONOLOGICAL LIST OF WRITTEN PUBLICATIONS .. 3
ADDITIONAL INFORMATION:... 5

List of Figures

 Figure 1: A quad chart describing the technology 6

1

1.1 Objective

HOT languages are characterized as being "Higher-Order" and "Typed," two characteristics that
greatly facilitate the development of evolvable, modular software. This project bases its work
on the use of HOT language technology, with particular focus on the application and
implementation aspects of the technology. In addition, the project focuses on the use of
domain-specific embedded languages and rincipled interoperability. Most of the work is being
done in the context of the HOT languages ML and Haskell.

1.2 Approach

This work is divided into three inter-related areas: software architecture, HOT infrastructure,
and domain-specific embedded languages (DSEL).

In the area of software architecture, the project focuses on extending the ACME architectural
description language with powerful features from the HOT language community. Two extensions
are currently being investigated, one involves extending ACME with higher-order functions to
support parameterized architectures in a more general way than templates; another involves
extending ACME with user-defined constraints. Higher-order functions are useful for expressing
complex architectures in a concise and simple manner; constraints allow many forms of program
analysis to be captured through the use of domain-specific constraint solvers.

In the area of HOT infrastructure, the project focuses on two areas: First is the implementation
of the FLINT system. FLINT is a common typed intermediate language that models the
semantics and interactions of various HOT language features. It provides a common compiler
backend that can be quickly adapted to generate compilers for new HOT languages. With its
single unified type system, FLINT serves as a great platform for reasoning about cross-language
interoperations. It can also serve as more powerful executable content than Java VM code,
making all HOT programs Internet ready.

Another aspect of our HOT infrastructure is the implementation of HUGS, considered to be the
premier programming environment for Haskell users. At the core of HUGS is a byte-code
interpreter whose fast compilation times make it very popular. We are collaborating with the
Universities of Glasgow and Nottingham to combine this flexible core with a GHC, considered
the best compiler for Haskell. With the resulting merger, one will be able to mix interpreted and
compiled code, just as in a traditional Lisp environment.

Finally, abstraction is arguably the most important factor in writing evolvable, modular software.
But the ultimate abstraction for a particular application is a domain specific language: a
programming language specifically tailored to the application, with which a person can quickly
and effectively develop a complete software system. Unfortunately, designing and implementing

2

a new language is difficult, and furthermore, we can expect the language itself to evolve. Thus
this project begins with the idea of inheriting the infrastructure of some other (HOT) languages--
-tailoring it in special ways to the domain of interest---thus yielding a domain specific embedded
language (DSEL). The language FRAN (functional reactive animation) is one such example---
designed for creating richly interactive, multimedia animations. FRAN is embedded in Haskell,
but has the distinct look and feel of a completely new language.

1.3 Recent FY-1999 Accomplishments

Extended FLINT to support Java type system. Designed a conservative extension of the
polymorphic lambda calculus (Fomega) as an intermediate language for compiling languages
with name-based class and interface hierarchies. The extension enables the safe interoperation
between class-based and higher-order languages and the reuse of common type-directed
optimization techniques, compiler back ends, and runtime support. A paper entitled
"Representing Java classes in a typed intermediate language" is to appear in 1999 ACM
International Conference on Functional Programming (ICFP99).

Designed and implemented a cross-module inlining and specialization algorithm in the FLINT
compiler. The new algorithm can guarantee inlining of functions across arbitrarily functorized
code while still reserving separate compilation.

Developed a reference implementation for Functional Reactive Programming. This
implementation has simple, easily understood semantics and may serve as a formal definition of
one possible semantics for Functional Reactive Programming.

Completed the merger between Hugs and GHC. Developed a new runtime system to support
interoperation between compiled GHC code and interpreted Hugs code. Released a new
version of Hugs, compliant with the new Haskell 98 standard.

1.4 Technology Transition

The FLINT infrastructure has been recently incorporated into the SML/NJ program
environment --- a production system jointly developed by Lucent, Princeton, Yale, and AT&T.
Both FLINT and SML/NJ are now being used worldwide by large number of software
developers (including the DARPA-supported projects such as the Fox project at CMU and the
Zephyr project at U. Virginia and Princeton).

FRAN is being developed in collaboration with researchers at Microsoft, whose interest relates
not just to easing graphics and animation programming, but also as a viable method for
programming Talisman, their new sprite-based 3D graphics hardware.

3

Hugs is being used world-wide by hundreds of users. Most of these users are academic
researchers, many are using it for teaching, but only some are using it in industrial settings.
Hopefully, this latter category will increase, especially with the improvement in web functionality.

1.5 A Chronological List of Written Publications

 Haskore Music Tutorial, by Paul Hudak, in Advanced Functional
 Programming, Springer Verlag LNCS 1129, pp. 38-68, August 1996.

 Rolling Your Own Mutable ADT---A Connection between Linear Types and
 Monads, by Chih-Ping Chen and Paul Hudak, in Proceedings of 24th ACM
 Symposium on Principles of Programming Languages, January 1997.

 Type Inference with Constrained Types, by Martin Sulzmann, Martin Odersky
 and Martin Wehr, in Proceedings of the FOOL'97 (Foundations of Object-
 oriented Languages) Workshop, January 1997.

 Report on the Programming Language Haskell (version 1.4),
 by John Peterson (editor). Research Report YALEU/DCS/RR-1106,
 Yale University, April 1997.

 Standard Libraries for the Programming Language Haskell (version 1.4),
 by John Peterson, Research Report YALEU/DCS/RR-1105, Yale University,
 April 1997.

 The RBMH User Guide, by John Peterson and Gary Shu Ling. April 1997.

 Hugs 1.4 User Manual, by Mark P. Jones and John C. Peterson, Yale
 University, Department of Computer Science, Research Report
 YALEU/DCS/RR-1123, 1997.

 Principled Dynamic Code Improvement, by John Peterson, Paul Hudak, and
 Gary Shu Ling, Yale University, Department of Computer Science,
 Research Report YALEU/DCS/RR-1135, July 1997.

 Functional Reactive Animation, by Paul Hudak and Conal Elliott, in
 Proceedings of 1997 International Conference on Functional
 Programming, June 1997.

 Flexible Representation Analysis, by Zhong Shao, in
 Proceedings of 1997 International Conference on Functional
 Programming, June 1997.

4

 An Overview of the FLINT/ML Compiler, by Zhong Shao, in
 Proceedings of 1997 ACM SIGPLAN Workshop on Types in
 Compilation, June 1997.

 Green Card: A Foreign Language Interface for Haskell, by Alastair Reid,
 Simon Peyton Jones, and T. Nordin, in Proceedings of the 1997 Haskell
 Workshop, Amsterdam, the Netherland, June 1997.

 Typed Common Intermediate Format, by Zhong Shao, in
 Proceedings of 1997 Usenix Conference on Domain Specific
 Languages, October 1997

 Modular Domain Specific Languages and Tools, by Paul Hudak, submitted
 to 1998 International Conference on Software Reuse, October 1997.

 An Intermediate Meta-Language for Program Transformation, by Mark
 Tullsen and Paul Hudak, submitted to 1998 ACM Symposium on Programming
 Language Design and Implementation, November 1997.

 Implementing Typed Intermediate Languages by Zhong Shao,
 Christopher League, Stefan Monnier, Bratin Saha, and Valery Trifonov,
 submitted to 1998 ACM Symposium on Programming Language Design and
 Implementation, November 1997.

 Type Inference with Constrainted Types, by Martin Odersky,
 Martin Sulzmann and Martin Wehr, invited submission to Journal of
 TAPOS (Theory and Practice of Object Systems), October 1997.

 First-Class Schedules, by Rajiv Mirani and Paul Hudak, being submitted
 to ACM Transactions on Programming Languages and Systems, November 1997.

 Efficient and Safe-for-space Closure Conversion, by Zhong Shao
 and Andrew Appel, being submitted to ACM Transactions on Programming
 Languages and Systems, December 1997.

 Flexible Representation Analysis, by Zhong Shao, being submitted
 to ACM Transactions on Programming Languages and Systems,
 December 1997.

 Typed Cross-Module Compilation, by Zhong Shao, being submitted
 to Journal of Functional Programming, December 1997.

5

1.6 Additional Information

Figure 1 is a quad chart describing the technology. Additional project information can be found
at the following website: http://www.cs.yale.edu/edcs

6

Figure 1

FLINT

Release of higher-order
ACME with type-based
program analysis.

New Ideas

Domain Specific
Languages

Robotics
Vision

Graphics

Jul ’97 Jul ’98 1.2 Schedule
• Construction of domain-specific languages for

robotics, vision, graphics allows rapid development
and evolution of programs in these domains.

• Extensions to ACME (an Architectural Description
Language) increase the power of ACME. Extensions
include higher-order functions and analysis tools.

• Functional programming language implementations at
Yale (Hugs and SML/NJ) are used by researchers
worldwide.

• Domain-Specific Embedded Languages capture the
semantics of an application domain.

• Use functional programming methodology to create
the next generation of Architecture Description
Languages.

• Use types to ensure reliability and correctness,
express complex program properties, implement
program analysis tools.

• Interoperability using advanced software
components. Use types and higher-order functions to
compose components reliably.

Jan ’97 Jan ’98 Jan ’99 Jul ’99

Theory of
domain-specific
languages and
methodology
completed.
Defined
principles of
functional

Release of FLINT and Hugs.

Release domain-specific
languages for robotics and
vision. Demonstrate
composability, evolvability,
interoperability of domain-
specific languages.

HOT Languages
(Higher-Order Typed)

Compiler
Imfrastructure

ADLs (ACME)

Hugs

Architectural
Analysis Design

Patterns

